

Characterization report of Vendor A VCSELs

Rubén Pérez-Aranda Plinio Jesús Pinzón

IEEE 802.3 OMEGA Task Force - July 2020 Plenary

Introduction

- KDPOF has characterized 3 different Vendor A VCSEL designs
 - 25Gbps (designed for NRZ, 25GBd) multimode VCSEL for 850 nm
 - 50Gbps (designed for PAM4, 25GBd) multimode VCSEL for 850 nm
 - 50Gbps (designed for PAM4, 25GBd) multimode VCSEL for 910 nm
- L-I-V, AC and RIN have been measured according to test methodologies explained in perezaranda_OMEGA_01_0720_VCSEL_test_methods.pdf
- All the test parameters have been measured at -40, 0, 25, 85, 105 and 125 °C backside temperature
- Eye diagrams for 26.5625 GBd NRZ are shown
 - These eye diagrams are not intended to assess suitability of an specific VCSEL for OMEGA application.
 - These eye diagrams are intended to illustrate the effect of temperature and current in the VCSELs response
- Next step will be to carry out link budget analysis

25Gbps multimode VCSEL for 850 nm

IEEE 802.3 OMEGA Task Force - July 2020 Plenary

L-I-V characteristic

Threshold current characteristic

$$H(f) = C \cdot \frac{f_r^2}{f_r^2 - f^2 + j\frac{f}{2\pi}\gamma} \cdot \frac{1}{1 + j\frac{f}{f_p}}.$$
 (see [1])

Considered source impedance 100Ω

Relative intensity noise (RIN_{OMA}) at -40°C

Relative intensity noise (RIN_{OMA}) at 25°C

Knowledge Development

Relative intensity noise (RIN_{OMA}) at 125°C

Normalized max RIN (RINAOP)

50Gbps multimode VCSEL for 850 nm

IEEE 802.3 OMEGA Task Force - July 2020 Plenary

L-I-V characteristic

Threshold current characteristic

$$H(f) = C \cdot \frac{f_r^2}{f_r^2 - f^2 + j\frac{f}{2\pi}\gamma} \cdot \frac{1}{1 + j\frac{f}{f_p}}.$$
 (see [1])

Considered source impedance 100Ω

Relative intensity noise (RIN_{OMA}) at -40°C

IEEE 802.3 OMEGA Task Force - July 2020 Plenary

Relative intensity noise (RIN_{OMA}) at 25°C

IEEE 802.3 OMEGA Task Force - July 2020 Plenary

Knowledge Development

Relative intensity noise (RIN_{OMA}) at 125°C

Normalized max RIN (RINAOP)

50Gbps multimode VCSEL for 910 nm

IEEE 802.3 OMEGA Task Force - July 2020 Plenary

L-I-V characteristic

Threshold current characteristic

$$H(f) = C \cdot \frac{f_r^2}{f_r^2 - f^2 + j\frac{f}{2\pi}\gamma} \cdot \frac{1}{1 + j\frac{f}{f_p}}.$$
 (see [1])

Considered source impedance 100 Ω

Relative intensity noise (RIN_{OMA}) at -40°C

Relative intensity noise (RIN_{OMA}) at 25°C

IEEE 802.3 OMEGA Task Force - July 2020 Plenary

Relative intensity noise (RIN_{OMA}) at 125°C

Normalized max RIN (RINAOP)

References

• [1] Seyed Ehsan Hashemi, "Relative Intensity Noise (RIN) in High-Speed VCSELs for Short Reach Communication", Master of Science Thesis in Photonics Engineering, Chalmers University of Technology